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ABSTRACT 

For a single aperiodic, orientation preserving diffeomorphism on the 

circle, all known local results on the differentiability of the conjugating 

map are also known to be global results. We show that this does not hold 

for commutative groups of diffeomorphisms. Given a set of rotation num- 

bers, we construct commuting diffeomorphisms in C 2-E for all e > 0 with 

these rotation numbers that are not conjugate to rotations. On the other 

hand, we prove that for a commutative subgroup .T" C C 1+~, 0 < ~ < 1, 

containing diffeomorphisms that are perturbations of rotations, a conju- 

gating map h exists as long as the rotation numbers of this subset jointly 

satisfy a Diophantine condition. 

1. I n t r o d u c t i o n  

1.1 BACKGROUND. Le t  7-I d e n o t e  t he  g roup  of  o r i e n t a t i o n  p r e s e r v i n g  

h o m e o m o r p h i s m s ,  u n d e r  c o m p o s i t i o n ,  of  t he  circle  T a n d  for ~ _> 0 le t  7-/~ d e n o t e  

t h e  subse t  of  C ~ m a p p i n g s .  

In  t h e  1880's,  Po inca r6  showed  t h a t  to  each  such  m a p  f is a s s o c i a t e d  a rea l  

p a r a m e t e r  a E [0, 1), ca l led  the  r o t a t i o n  n u m b e r ,  a n d  t h a t  for a p e r i o d i c  f t h e  

o rb i t  s t r u c t u r e  of  f is t h e  s a m e  as t h a t  of  t h e  r ig id  r o t a t i o n  by a ,  R~( t )  = t + 

( m o d  1). L e t t i n g  t E T and  fJ  d e n o t e  t he  c o m p o s i t i o n  f o f o . . .  o f of  f 

w i t h  i t se l f  j t imes ,  t he  c o r r e s p o n d e n c e  b e t w e e n  an  a p e r i o d i c  e l e m e n t  of  7 - / a n d  
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the associated rotation number means that the two sequences {fJ(t)}jE z and 

{ja (mod 1)}jez can be mapped one onto another by an orientation preserving 

self mapping of the circle. We use f~ to denote a map in 7-/ with rotation 

number a and assume from here on that a is irrational, even when not explicitly 

mentioned. In general we omit tile use of the composition symbol. 

Half a century later, Denjoy [2] showed that if Df~ is of bounded variation, 

then f~ is conjugate to the rotation R~. When f is conjugate to a rotation, the 

orbit of every point under the iterates of f is dense and f is said to be minimal. 

For a commutative subgroup of 7-/, it is easy to show that if one of the 

diffeomorphisms of the subgroup is conjugate to a rotation, the entire subgroup 

is simultaneously conjugate to a subgroup of rotations. Thus, joint conjugation 

of the subgroup is equivalent to the minimality of the subgroup. The differen- 

tiability of the conjugation h will be affected, as for a single diffeomorphism, 

by the differentiability of the diffeomorphisms fol ,  f~2, . - . ,  f ~  and by the joint 

Diophantine properties of the elements of A = {al, a2 . . . . .  ctn}. 

For a single diffeomorphism, all known local results have been shown to be 

global results: so long as f E 7-I 2, f is minimal and even if f is a perturbation 

of a rotation one needs f E 7-/2 to ensure minimality. (This problem has an 

extensive history. See [1], [8], [3], [11], [6], [10] and [5] for results on minimality 

and differentiability of the conjugating map and [2] and [4] for non-minimal ex- 

amples.) In contrast, we show that the differentiability required for minimality 

of commuting diffeomorphisms is different for the local and global situations. In 

the global situation, the system generated need not be minimal when the diffeo- 

morphisms are less than twice differentiable. However if the diffeomorphisms are 

sufficiently close to rotations, then the system they generate is minimal. Before 

stating the theorem precisely, we need some notation. 

1.2 DIOPHANTINE ASSUMPTION. Given A = {al,  a 2 , . . . ,  an}, a finite set of 

irrational numbers in [0, 1), let A denote the finite linear combinations of elements 

of A, 

A = { ~ kjaj : kj E Z for j = l ,2, . . . ,n}.  
j = l  

Given any "1, E fi,, define the l eng th  g(3 ~) of ~/= ~j~-=l kjaj by 

e(~)=  max Ikjl. 
j=l,2,...,n 
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For 7 E T ,  define I1~11 to be the distance from 7 to the nearest integer, Ibll = 

minkcz I k - 71. The set A is said to have d e n s i t y  d = d(A)  if there exists a 

constant  c > 0 such tha t  for any t E T and for all m E N,  there exists 3' E fi~ 

such tha t  

e(~)~m and IIt-~ll~c ~-d. 

(Note tha t  if A has density d, it also has density d ~ for any 0 < d ~ < d.) Thus 

the density measures how well every point on the circle can be approximated by 

linear combinat ions of the a j, with specific bounds on the sizes of the coefficients. 

This is a general condition: almost all n-tuples in T have density d > n - e for 

all e > 0. (See Kra [7] for further details.) 

1.3 STATEMENT OF RESULTS. In Section 2, we show 

THEOREM 1.1: Given al ,  a 2 , . . . , a n  E T ,  there exist non-minimal  commut ing  

maps  f ~  , f~2 . . . . .  f ~  E ~ 2 - .  

(The nota t ion f E C w- means tha t  f E C w-~ for all e > 0.) 

On the other hand, in Section 3 we show that  if the maps are per turbat ions  

of rotat ions we have the existence of a conjugating map,  even if none of the ai  

individually satisfies a Diophantine condition. 

THEOREM 1.2: Let  ~ C 7-I be a commuta t ive  subgroup and f ~ , f ~2 , . . . , f ~ E 

.~. A s s u m e  tha t  A = {o~1, a 2 , . . .  , a n }  has densi ty  d > 1 and 1/d  </3  < 1. There 

exist neighborhoods N1, N 2 , . . . ,  N,~ o f  R ~  , R~2, . . .  , R ~  in ~o  (depending on 

d) such that  i f  f ~  E Nj  for j -- 1, 2 , . . . ,  n, then the action of  ~ is minimal  and 

the conjugation h E 7-I l+~- l / d -  

See Moser [9] for a local result for n commut ing  diffeomorphisms of ?-/~. 

We also prove a result in Section 4 where the commut ing  diffeomorphisms are 

assumed to be conjugate in 7-/, to rotat ions and show tha t  this guarantees tha t  

the conjugation is as differentiable as expected by Theorem 1.2. By Theorem 1.1, 

one must  assume some extra condit ion in order to draw any conclusions. 

2. A Denjoy-type example 

We show tha t  given irrational numbers  a l ,  a2 E T,  there exist commut ing  diffeo- 

morphisms ]~1, f~2 in 7-I 2-  tha t  are not minimal. Al though we only consider the 
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case of two diffeomorphisms, the same argument applies for any finite number. 

The construction is based on examples of Denjoy. (See [2], [4].) 

2.1 THE SEMI-CONJUGATING MAP. 

PROPOSITION 2.1: Let F C T be a totally disconnected perfect set and let 

al, a2 be irrationals in T, independent over the rationals. There exist commuting 

mappings f ~ ,  f~2 e TI such that the limit points of { f ~  (t)}je z and {fJ2(t)}jez, 

as j ~ +00, are exactly F. 

Proof Enumerate the components {In,m}(,~,,~)ez2 of T \ F  so that their order on 

T is the same as that of {nal+ ma2}(~,m)eZ2. Define f~2 to be linear increasing 

on I,~,m with f~2(In,m) = I~,m+t and complete f~2 by continuity. Fixing n, the 

orbit of any t E T \ F  under f~2 enters each In,m (for all m) exactly once and so 

the limit points of {f~2(t)}jez all lie in F. Conversely, any point in F can be 

written as a limit point of intervals of the form In,m with fixed n, and so as a 

limit point of the orbit of t. By construction P(f~2) = a2. 

Define f~l on {In,o},~ez as linear increasing with f~l (In,o) = In+l,o. Define 

f ~  on the remaining intervals by composition. Thus on In,m for m > 0, 

fal(x) = f~2"'" fc~2(fc~x(f:21''" f:21(x))), 

where the composition of f~2 (or f~-~) with itself occurs m times. (Similarly, for 

m < 0, f ~  is defined by composition of f~-21 and f~2, each taken m times.) 

As for f~2, the limit points of { f~ ( t ) } j e z  as j --+ 4-oo are exactly F and 

P ( f , ~ , )  ---- 0~1. ]] 

Since f ~ ,  f~2 commute, the same semi-conjugating map h works for both 

diffeomorphisms. However by choosing F to be a totally disconnected perfect 

subset of T, h is not a homeomorphism. 

2.2 DIFFERENTIABILITY. By taking F to be a set of measure 0 and de- 

termining the sizes of the intervals I,~,m, we can guarantee a greater degree of 

differentiability for the maps f~l,  f~2. Again, we define fal only on {In,o}nez, 

f~2 on all of T and then define f~l elsewhere by composition. On the interval 

I,~,o, let 

Df~ 1 -- 1 on the endpoints of In,0, 
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Df,~ = 1 + 2Cn at the midpoint of In,o, 

where C~ is still to be determined and let Df,~I be affine between these val- 

ues. Then, ]I.+1,01 = IIn,o] + C,~lI,~,ol and on {In,o}~ez, Df,~I has modulus of 

continuity r if and only if ICnl = O(~b([I~,01)). Let 

S = (In] + 2)log2(In[ + 2) so - n = - o ~  ' 2 l o g  ~ S 2 

and 

[In,o[ = So 
(In] + 2) log2(In] + 2)" 

Then, ICnl is approximately 1/n and so Df~ 1 has modulus of continuity r  = 

x log 2 x on {L~,0}nez- 

On the interval I,~,m, let 

Df,~2 = 1 on the endpoints of I,~,,~, 

Df,~ 2 = 1 + 2Din at the midpoint of I~,m 

and let Df~ 2 be affine between these values. Then, as above, IIn,m+ll = 

]In,ml(1 + Din) and Df,~ 2 has modulus of continuity r if and only if IDml = 

O( r ). Letting 

So2 log 2 2 d,~ 
dn = (in[ + 2)log2(In[ + 2) and [In,m[ = (im[ +2)log2([m[ + 2), 

we have, as above, [Dm[ is approximately 1/m and Df,~ 2 has modulus of conti- 

nuity r  = xlog2(x). Therefore, Df,~ 2 �9 C 2-. 

By definition f~l is the composition of maps, each of which is 7-/1+~ for all 

r < 1. Since 7-/1+~ forms a group, f~l is itself 7-I 2-. Therefore, we have proven 

Theorem 1.1. 

3. T h e  c o n j u g a t i n g  m a p  in 7-I 2- 

We consider n commuting diffeomorphisms f ~  which are sufficiently close to the 

rotations R,~j for j = 1, 2 , . . . ,  n. Before turning to the proof of Theorem 1.2, we 

clarify the metric used on 7-/k+~ and some background material. 
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3.1 METRIC ON ~k+Z. It is convenient to use a translation invariant metric 

on 7-/k+z which is equivalent to the standard metric. Let 

Ck+Z( f )=  sup I[r 
CEBk+~ 

where Bk+Z = {r C 7-/k+z : [[r = 1} and ][r denotes the standard 7-/k+z 

norm. Define the ~/k+~ distance of f to the identity I by 

dk+z(f, I) = log (max((I)k+z(f), (I)k+z(f-1))) + sup If(t) - t[ 
tET 

and the 7-/k+z distance between f and g to be 

dk+~(f , g) = dk+z(f g -1, I). 

3.2  DIFFERENTIABILITY AND BOUNDS ON ITERATES. The proof uses tech- 

niques introduced by Katznelson and Ornstein [5] and exploits the correspon- 

dence between the differentiability of the conjugation h and bounds on the iter- 

ates of f and its derivatives. Herman [3] gives proofs of the general statement: 

h E 7-/k+z if and only if the iterates {ff}jEz are uniformly bounded in 7-/k+z. 

We use a reformulation of these results introduced by Katznelson and Ornstein 

N: 
THEOREM 3.1: Let A = {al,  a 2 , . . . ,  am} be irrationals in T and let A denote 

the subgroup of rotations generated by A. Assume that f~ = h-lR.rh ('r E f t )  

are uniformly bounded in 7-I k, where k E N, k r 0. Assume that the mapping 

~/ H f~ from { 7 } ~ i  into 7-I k has modulus of continuity r Then h E 7-I k and 

Dkh has modulus of continuity r 

3.3 GENERAL APPROACH. In order to prove Theorem 1.2 for general ~" C 7-/, 

it suffices to consider the properties of a finitely generated subgroup. We plan to 

show:  

THEOREM 1.2: Assume that A = {al,  a 2 , . . . ,  an} has density d > 1 and 1/d < 

< 1. There exist neighborhoods N 1 , N 2 , . . . , N n  of R ~ l , R ~ , . . . , R ~  in 7-I ~ 

depending on d such that i f  f~j E Nj for j = 1 , 2 , . . . , n ,  then f~j is minimal for 

j = 1, 2 , . . . ,  n and the conjugation h E ?-I l+~-l/d- 

Let A denote the subgroup of rotations generated by A. Consider the map 

(1) ~ ~ f~ 
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from the subgroup of the circle A to 7/1. By  Theo rem 3.1, the differentiabili ty 

of h can be de termined by es t imat ing  the modulus  of continuity of this mapp ing  

in 7-/1. Since there exists a t rans la t ion invariant metr ic  on 7/1 (see Section 3.1) 

it suffices to check the modulus  of continuity in a neighborhood of the identity. 

We s tar t  with some notat ion.  

Let c -- c(d) denote the constant  de termined in the definition of the densi ty of 

the subgroup.  Let 

E m =  {3' E A :  6(3') <_ 2 TM} and E ~ = {3' e Era: [[3'[I ~ c2-dm}" 

We check the modulus  of continuity of the m a p  in equat ion (1) on Um E~ and 

show tha t  

(2) IIDf-r - 1[1r162 = O((2-dm) z - l /d - )  

for 3' E E ~  As it is easier to work with log Dr,  we show 

(3) [1 l ~  = O((2-dm) ~- l /d- )  

for 3' E E ~  Since l o g n f ~  is small,  Hnf,~ - 111~ ~ Jl logDf~[I  and es t imate  (2) 

follows f rom es t imate  (3). 

Once we have es t imate  (3), Df, y approaches zero exponent ia l ly  fast in 3' for 

/3- 1/d > 0. Thus,  for S -  1/d > 0 the derivatives Df,~ are uniformly bounded  

and the m a p  3' H Df,~ has modulus  of cont inui ty/3  - 1/d. By Theo rem 3.1, h is 

differentiable and its derivative has modulus  of cont inui ty/3  - 1/d. 

In order to obta in  es t imate  (3), we first show tha t  for diffeomorphisms tha t  are 

e close to rotat ions,  for ~ sufficiently small,  we have this es t imate  up to a cer tain 

m0. This  gives a pre l iminary  es t imate  for all m, and these es t imates  can be used 

to obta in  the desired inequali ty for bigger values of m and eventual ly all m. 

3.4 PROOF OF THE THEOREM. We s tar t  with E ~  m < m0, and proceed by 

induction. The  de te rmina t ion  of exact ly  how large m0 must  be  taken  is left until  

later. Fix  e > 0, wi th  e < min~eE m II3`H. Choose neighborhoods N1, N 2 , . . . ,  N~ 

of the  ro ta t ions  R~I ,  R a 2 , . . . ,  R ~  so tha t  for all 3  ̀ E Em, ]f~(t) - R~(t)l < e 

whenever f~i  E Nj  for j = 1, 2 , . . . ,  n. Then  for 3  ̀E Era, 

(4) ]f-~(t) - t] <__ 2]]3` H 

for all t E T .  Specifically, for 3, E E ~ 

(5)  IS (t) - tl < 211 11 -- O ( 2 - d m ) ,  
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where the constant (call it c,~) is a multiple of the density constant c. Fixing m, 

the neighborhoods N1, N2 , . . . ,  N~, diffeomorphisms f~a, f ~ , " ' ,  f~.  with f ~  E 

Nj for j = 1, 2 . . . .  , n, 7 C E ~ and x E T, we estimate log Df.r(x ). 

For every 7 there exists y = Y'r such that logDf.~(y) = 0. (Since f ,  maps 

the circle onto itself, such y exists.) Thus for arbitrary x C T we can write 

logDf.y(x)  = logDf .~ (x ) - l ogDf i r ( y  ). Since A has density d, we can find 6 E Em 

with IR,(x)  - y[ <_ c2 -dm. By choice of the neighborhoods Nj,  for 3 E Em the 

map f ,  is close to a rotation and so 

(6) I : , (x )  - vl = o ( 2  - d ' )  

with constant cm, the same as that in equation (5). 

Write 7 = ~--~.j #j, 6 = y~.j vj, where #j, uj E A, and let 7j = ~-~.~<j #~, 6j = 

~ < j  vi. (Thus the last 7j is 7 itself and 7 is written as a sum of at most 

ng('7) <_ n2 m terms. Similarly for 6.) Then: 

logDf~(x)  = logDf_,~f~f,~(x) - logDj'~(y) 

(7) = logDfv( . f6(x))  - l o g D L ( y  ) + logDf6(x)  - logDf6( fT(x) )  

(8) = Z [ l o g  D L j  (f~j (f6(x))) - log D f  m (f'~5 (Y))] 
J 

+ Z[log Df~,j (:~, (x)) - log D:,~ (f6~ (f,(x)))]. 
J 

By choice of 6, ] / , (x )  - Yl = O(2-d'~) (equation (6)) and since 7 e E~ 

If-r(x) - x[ = O(2 -din) (equation (5)). Furthermore, since 7d e Em 

IG:~(x) - :-,~ (y)l <_ I f . y j f , (x )  - R . / , f , ( x ) l  + IR.~j f , (x)  - R.~,(y) l  

+ I R ~ , ( y ) -  :~,(Y)I 

< cm2 - d ~  + I: , (x)  - ~1 + c~  2 - d ' ,  

and so 

If~jf~(x) - f ~  (y)l = 0(2  -din) 

with constant at most 3cm. Similarly, l f , ~ f . y ( z ) -  f~j(x)] = 0 (2  -am) with the 

same constant. 

Since D f,~j E C a, 

(9) IlogDf, j(f..t,(f,~(x))) -logDfuj(f.r~(y))I = 0(2 -drn/3) 
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and 

(10) llogDf.,(faj(x)) -logDf.,(f~,(f.~(x)))l = 0(2  -dmz) 

where the constants depend on c,~ and the H61der constants of fax, f a 2 , . . . ,  fa~. 

By combining equations (8), (9) and (10), we have 

I logDf.y(x)[ = O(ng(../)2-dmZ+ ng(~)2 -d'~z) = O((2-d'~)Z-1/d),  

since g(7),g(6) _< 2 m. Therefore, we have the desired conclusion for E ~  with 

' depending on Cm, the H61der constants of the fo~ and the some constant c m 

number of elements n in A. 
0 0 Next, we show that the same estimate holds for ~ E Era+ 1. Let ~ E Era+ 1. 

Once again, to estimate log D f s ( x  ), we write 

log Df~r(x) = log Dy~:(x) - log D fh(y  ), 

where logDf:r(y ) = 0. Since A has density d, there exists 5 C Em+l with 

IRg(z) - y[ < c2 -d(m+l). As in the expansion of equation (7), 

(11) t l ogDfs (x ) l  <_ I l o g D f ~ ( f g ( x ) ) -  logDfs,(y)t  

+ I logDf#(x )  - logDfg(f~t(x))  I. 

0 2 - d ( m + l )  2-din. Since ~ C Era+l, 117]1 -< _< Furthermore, there exists "y �9 Em 

so that  II'Yll -< 2(2-rod) and ll711 <- [Iq'll. Since the f~j commute, they are semi- 

conjugate to rotations and so the order on the circle of the orbit {f~(t)}~e A 

is the same as that imposed by the rigid rotations {R~(t)}~e/i. Therefore, by 

conjugation we have 

[f~(x) - x I < [f~(x) - xl, 

and since the diffeomorphisms are perturbations of rotations, the choice of neigh- 

borhoods N1, N2 , . . . ,  N~, gives (see inequality (4)) [ f .~(x ) -x  I < 2cm2 -md. Thus, 

- --- 2 r  - r o d  

We apply the same reasoning to ]f$(x) - Yl. By conjugation Ifg(x) - y[ is 

bounded by If~(x) - y} for some 5, at most twice the distance away, and we 

already know that If~(x) - Yl < 2cm 2-rod. Therefore, Ifg(x) - Yl < 2cm 2-rod. 

These estimates can be improved. As for 3, E Era, if # E Em+l then 

Ifufh,(x) - f~(x)l  < 6Cm2 -rag and I fufg(x) - f~(Y)l < 6Cm 2-rod, By  expand- 

ing equation (11) in the same way as equation (8), combined with the analogous 
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results of (9) and (10), we have 

(12) 

[logDf#(x)l < - y[) z + n g ( ~ ) ( 3 [ f : f ( x )  - x l )  f~ 

< 2m+13 C m(2-md) + 2m+13ZC'm(2-md)  

= 

For 3 - 1 / d  > 0, estimate (12) gives that [Df#(x)] is exponentially close to one. 

Thus for m < m0 with m0 sufficiently large, the action of f~ is like that of rotation 

by 9 for a large number of iterations. Considering the interval [x, f#(x)] C 

[x, fir(x)], where "~ E Em is chosen as above, f# maps the interval Ix, f#(x)] onto 

an adjacent interval. The interval of length 7 (under rotation by ~) is divided into 

a certain number of intervals, and by conjugation f~ divides the corresponding 

interval into the same number of pieces. This creates II~II/ll~ll subintervals of 

[x, fir(x)], each of approximately (exponentially close to being) equal size. That 

is, we have the improved estimate 

I f : r ( x )  - x I < C~2-d(m+l), 

' is linear in m, and is accounted for by where the error in using the constant cm 

the loss of arbitrarily small e in the conclusion of the theorem. 

By the same reasoning, we have I f $ ( x )  - y[ < c ' 2  -d(m+U. Combining these 

estimates with equation (12), we have 

I logDf:r(x)l = o(2m+12-d(m+U/~-) 

= O ( ( 2 - d ( m + l ) ) ~ - l / ~ - ) ,  

where the constant depends on choice of neighborhoods N1, N2, . . . ,Am, the 

number of elements in A, the density constant and the Hhlder constants of the 

diffeomorphisms f~j. This gives exactly the estimate needed for Em+l. 

Since any diffeomorphism that commutes with f~, when f~ is conjugate to R~, 

is also conjugate to a rotation via the same map h, given a commutative subgroup 

C 7-/ and some finite subset f ,~,  f ,~2,. . ' ,  f,~. E 9 r satisfying the hypotheses 

of Theorem 1.2, we have the existence of h E Ill 1 + ~ - 1 / d -  that conjugates each 

f E 9 r to a rotation. | 

Extensions of these techniques (Kra [7]) can be used to prove local results for 

higher derivatives, illustrating the exact loss of differentiability that occurs in 
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Moser's Theorem. At this time, a global version of Theorem 1.2 has yet to be 

proved or disproved. 

4. Assuming 7-17 conjugation 

In this section, we prove a result for diffeomorphisms (not necessarily twice 

differentiable) using a slightly different condition than  the local assumption of 

Theorem 1.2. As the example of Section 2 shows, we need an extra  assumption 

or the conjugating map need not exist. The assumption that  h is 7-17 for some 

> 0 takes the role of the per turbat ion  assumption. We show: 

THEOREM 4.1 : L e t  .7" C ~l.{l+e be a c o m m u t a t i v e  subgroup  w i th  0 < ~ < 1 and let  

A = {al ,  a2 . . . . .  a , }  have  d en s i t y  d > 0. Assume there ex i s t s  h �9 ~ " ,  0 < rl < 1, 

so tha t  for some f~l ,  f ~  . . . .  , f~n E 9 c, f% = h - l R ~ ,  h for j = 1, 2 . . . .  , n.  T h e n  

i f  ~e - l i d  > O, h �9 7-/l+7*-t/d. 

We start  with a lemma needed in the proof of the theorem. 

LEMMA 4.2: L e t  A = {al ,  a 2 , . . . ,  a , }  be elements in T,  let  h �9 7-I and f ~  = 
n n 

h - ~ R ~ ,  h for j = 1, 2 . . . .  , n. L e t  5 = Y~j=I l j a j  and 7 = ~ j = l  k j a j ,  w i th  l j ,  k j  C 

Z for j = l , 2  . . . . .  n.  For x ,  y �9 T ,  e > O and O < ~ < l ,  i f J h ( x )  + ~ -  h(y) l  < e 

then  

(i) Jf~(x)  - Yl < ce7 for h �9 7-I 7 

If~(x) - Yl < ce for h - t  �9 Lip(l )  

(ii) I f ,  f ~ ( x )  - f-y(y)J < ce 7 for h e 7-/7 

Jf ,  f ~ ( x )  - f~(y)J  < ee for h -1 �9 Lip(I )  

for some c o n s t a n t  c. 

Proof:  Since h conjugates each diffeomorphism f~, to a ro ta t ion R ~ ,  given 

I f~ (x )  - yl  = Ih-l(h(x) + 5) - h - l ( h ( y ) ) l  

_ c l h ( x )  + 5 - h ( y ) l  7 < ce 7, 

when h -1 C C 7. Similarly, J f ,  f ~ ( x ) - f . r ( y ) l  -< cr for h -1 C C 7. For h -1 �9 

Lip(l) ,  the same argument  gives the inequalities with rl = 1. I 
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We now turn to the theorem. The proof follows the same general steps as the 

proof of Theorem 1.2. 

Proo~ Since .~ is a commutative subgroup, h simultaneously conjugates each 

diffeomorphism of ~" to a rotation. Thus, it suffices to show that h �9 C 1+~-1/d. 

As before, we consider the map 

7 ~'~ f~ = h - lR~  h 

from .4 to 7-/and estimate the modulus of continuity in a neighborhood of the 

identity. Using the same notation as in Theorem 1.2, it suffices to show that  for 

T e E  ~ 

(13) II log D f.ytl~ = O( (2-d'~)'7~-X/d). 

Once we have this estimate, the maps Df.y are uniformly bounded for y e -  l i d  > 0 

and Theorem 3.1 gives h E 7-/1 and Dh has modulus of continuity ye - l /d ,  and 

so h C 7"l 1+~-1/d. 

We estimate logDf~(x) by writing logDf~(x) = logDf .~ (x ) -  logDf~(y),  

where logDf~(y) = 0. There exists 6 C Em with Ih(x) + 6 - h(y)l < c2 -din, 

where c is the constant in the definition of the density of the subgroup. Then: 

(14) logDf~(x) = logDf~(f6(x)) - logDf~(y) + logDf6(x) - logDf~(f~(x)).  

We estimate the two differences of equation (14) separately. Writing 3 ~ = 

~ j  #j, 6 = ~ j  uj where each #j,  uj e A, and setting 7j = Y]~<j #i, 6j = ~ i < j  u~, 

we have for the first term: 

[ logDh( f~(x) )  - logDf~(y)] <<_ Z l l ogDfm( f~ f~ (x ) )  - l ogDfu j ( f~ (y ) )  I. 
J 

Since h �9 7-/n, we can apply Lemma 4.2. By choice of 6, If6(x) - y] <_ c12 -dmn, 

where ca is some constant depending on the HSlder constant of h and the density 

constant. Furthermore, by Lemma 4.2 part (ii), If~i (f~(z)) - f~i (Y)I <- Cl 2-dmn. 

Therefore, the sum of the first two terms of equation (14) is bounded by 

O(e( , y )nZ-dm"  = 

where the constant depends on the HSlder constants of the f~3, the number of 

elements in the subgroup A and the density constant. 



Vol. 93, 1996 COMMUTATIVE GROUPS OF CIRCLE DIFFEOMORPHISMS 315 

Similarly, by applying Lemma 4.2 to the second difference of equation (14), we 

have 

flog D f ~ ( x )  - log Df~( f .y (x) ) l  -= O(g(~)n2 -dmn~) = O( (2 -dm)  n~-l/d)  

and again the constant depends on the HSlder constants of the f ~ ,  the number 

of elements in A and the density constant. Combining the two terms, we have 

I l ogDfT(x ) [  = O((2-dm)~?e-1/d), 

which is exactly estimate (13). | 
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